Abstract

This paper is concerned with self-powered, self-latching tube hinges, made by cutting three parallel slots in a thin-walled carbon fiber reinforced plastic tube with a circular cross section. Thus, a hinge consists of two short tubes connected by three transversally curved strips of material (known as tape springs). A particular tube hinge design is considered, with a diameter of about one-third that of the hinges used previously; this requires the tape springs to reach strains close to failure when the hinge is folded. Three analyses of the peak strains in a tube hinge are presented. The first analysis obtains general analytical expressions for the longitudinal fold radius of a tape spring and the associated peak fiber strains. The second analysis is a finite-element simulation of the folding of a single tape spring and the third analysis is a simulation of a complete tube hinge. It is found that the largest fiber strains in one- and two-ply hinges can be predicted analytically with very good accuracy. I...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.