Abstract

Canonical immunoassays rely on highly sensitive and specific capturing of circulating biomarkers by interacting biomolecular baits. In this frame, bioprobe immobilization in spatially discrete three-dimensional (3D) spots onto analytical surfaces by hydrogel encapsulation was shown to provide relevant advantages over conventional two-dimensional (2D) platforms. Yet, the broad application of 3D systems is still hampered by hurdles in matching their straightforward fabrication with optimal functional properties. Herein, we report on a composite hydrogel obtained by combining a self-assembling peptide (namely, Q3 peptide) with low-temperature gelling agarose that is proved to have simple and robust application in the fabrication of microdroplet arrays, overcoming hurdles and limitations commonly associated with 3D hydrogel assays. We demonstrate the real-case scenario feasibility of our 3D system in the profiling of Covid-19 patients' serum IgG immunoreactivity, which showed remarkably improved signal-to-noise ratio over canonical assays in the 2D format and exquisite specificity. Overall, the new two-component hydrogel widens the perspectives of hydrogel-based arrays and represents a step forward towards their routine use in analytical practices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.