Abstract

Polyacrylonitrile (PAN)-based composite membranes were prepared by immersion precipitation method by using poly(N,N-dimethylaminoethyl methacrylate)-grafted silica (PDMAEMA@SiO2) nanoparticles as hydrophilic additives. The molecular weight of PDMAEMA were controlled by the surface initiated atom transfer radical polymerization of N,N-dimethylaminoethyl methacrylate on SiO2 nanoparticles. The synthesized nanoparticles have a typical core–shell structure as characterized in detail by FT-IR, TEM, DLS and GPC. The prepared PAN-based composite membranes have higher porosity and water permeation flux than those of the pure PAN membranes. They also show high rejection (⩾90%) to bovine serum albumin and high flux recovery ratio (⩾90%) to water permeation. These improved performances are attributed to the good hydrophilicity of PDMAEMA@SiO2 nanoparticles. The results suggest that PDMAEMA@SiO2 nanoparticles are suitable for the property optimization of PAN-based composite membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.