Abstract

Magnesium-ion batteries are attractive in part due to the high environmental abundance and low cost of magnesium metal. Anode materialsotherthanMgmetalcanprovideaccesstonewelectrochemistriesinnon-corrosiveMg2+ electrolytes.Acyclicvoltammetric method for the preparation of bismuth (Bi) based anodes was developed by systematically exploring electrodeposition using a quartz crystal microbalance. Controlled deposition of Bi on carbon nanotubes substrates could be achieved, enabling the first electrochemical investigation of bismuth-carbon nanotube (Bi-CNT) composite electrodes. Quasi-reversible Mg electrochemistry of Bi-CNT composite electrodes in non-corrosive magnesium-based electrolyte was demonstrated, with an initial delivered capacity exceeding 180 mAh/g. While the initial capacities were high, significant capacity decreases were observed with repeated cycling,

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.