Abstract

Dynamic, high-performance or real-time applications require scheduling latencies and throughput not typically offered by current kernel or user-level threads schedulers. Moreover, it is widely accepted that it is important to be able to specialize scheduling policies for specific target applications and their execution environments. This paper presents one solution to the construction of such high-performance, application-specific thread schedulers. Specifically, scheduler implementations are composed from modular components, where individual scheduler modules may be specialized to underlying hardware characteristics or implement precisely the mechanisms and policies desired by application programs. The resulting user-level schedulers' implementations can provide resource guarantees by interaction with kernel-level facilities which provide means of resource reservation. This paper demonstrates the concept of composable schedulers by construction of several compositions for highly dynamic target applications, where low scheduling latencies are critical to application performance. Claims about the importance and effectiveness of scheduler composition are validated experimentally on a shared-memory multiprocessor. Scheduler compositions are optimized to take advantage of different low-level hardware attributes and of knowledge about application requirements specific to certain applications, including a Time Warp-based real-time discrete event simulator. Experimental evaluations are based on synthetic workloads, on a real-time simulation blending simulated with implemented control system components, and on a dynamic robot control program. Measurements indicate that schedulers can be composed and specialized to offer performance similar to that of dedicated scheduling co-processors. Copyright © 1999 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.