Abstract

The premise that elastomeric materials could be used as one or more of the articulating components in both hip and knee prostheses was postulated first by Unsworth and co-workers. It was thought that such materials might have the capacity to mimic natural joint behaviour more closely than the more rigid bearing surfaces commonly in use. A more natural joint function in artificial joints should promote better tribology, with full fluid-film lubrication being the goal. Early tests showed that this objective could potentially be achieved with a judicious choice of materials and carefully controlled manufacturing techniques. This paper (Part 1 of a two-part series) describes and explains the techniques used to verify the material selection as well as to determine the most appropriate manufacturing procedure to obtain a strong and robust interface between the support and bearing material of the prosthesis. Two polycarbonate urethane (PU) materials with different hardness values (Corethane 80A and Corethane 75D) gave sufficient interfacial strength when moulded under optimum conditions. Corethane 80A was used as the soft bearing material while Corethane 75D provided the rigid backing component. Peel tests revealed strong interface bonds, varying with processing conditions between 350 and 862 N. Fourier transform infrared spectroscopy and micro-thermal analysis showed that a fusion bond over 30 microm thick formed at the interface. The results of the range of tests and analyses, which have been used in this study, have provided sufficient evidence to validate the process used to manufacture these components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.