Abstract

This paper presents a low complexity joint decoding scheme of block coded signals in an overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. In previous literature, a joint maximum likelihood decoding scheme of block coded signals has been evaluated through theoretical analysis. The diversity gain with block coding prevents the performance degradation induced by signal multiplexing. However, the computational complexity of the joint decoding scheme increases exponentially with the number of multiplexed signal streams. Thus, this paper proposes a two step joint decoding scheme for block coded signals. The first step of the proposed scheme calculates metrics to reduce the number of the candidate codewords using decoding based on joint maximum likelihood symbol detection. The second step of the proposed scheme carries out joint decoding on the reduced candidate codewords. It is shown that the proposed scheme reduces the complexity by about 1/174 for 4 signal stream transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.