Abstract
We study various complexity properties of suffix-free regular languages. A sequence (Lk,Lk+1,…) of regular languages in some class, where n is the quotient complexity of Ln, is most complex if its languages Ln meet the complexity upper bounds for all basic measures. It is known that there exist such most complex sequences in several classes of regular languages. In contrast to this, we prove that there does not exist a most complex sequence in the class of suffix-free regular languages. However, we do exhibit two such sequences that together meet upper bounds for all basic measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.