Abstract

The role of polymorphisms in determining the complexity of constraint satisfaction problems is well established. In this context, we study the stability of CSP complexity and polymorphism properties under some basic graph theoretic constructions. As applications we observe a collapse in the applicability of algorithms for CSPs over directed graphs with both a total source and a total sink: the corresponding CSP is solvable by the “few subpowers algorithm” if and only if it is solvable by a local consistency check algorithm. Moreover, we find that the property of “strict width” and solvability by few subpowers are unstable under first-order reductions. The analysis also yields a complete characterization of the main polymorphism properties for digraphs whose symmetric closure is a complete graph.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.