Abstract

The lysosomal degradation of ganglioside GM2 by hexosaminidase A depends on the presence of the specific activator protein which mediates the interaction between micellar or membrane-bound ganglioside and water-soluble hydrolase. The mechanism and the glycolipid specificity of this activator were studied in more detail. 1. It could be shown with three different techniques (isoelectric focusing, centrifugation and electrophoresis) that the activator protein extracts glycolipid monomers from micelles or liposomes to give water-soluble complexes with a stoichiometry of 1 mol of glycolipid/mol of activator protein. Liposome-bound ganglioside GM2 is considerably more stable against extraction and degradation than micellar ganglioside. 2. In the absence of enzyme the activator acts in vitro as glycolipid transfer protein, transporting glycolipids from donor to acceptor membranes. 3. The activator protein is rather specific for ganglioside GM2. Other glycolipids (GM3 GM1, GD1a and GA2) form less stable complexes with the activator and are transferred at a slower rate (except for ganglioside GM1) than ganglioside GM2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.