Abstract

Electrostatic assembly of conjugated polyelectrolytes, which combine a π-conjugated polymer backbone with pendant ionic groups, offer an opportunity for tuning materials properties and a new route for formulating concentrated inks for printable electronics. Complex coacervation, a liquid-liquid phase separation upon complexation of oppositely charged polyelectrolytes in solution, is used to form dense suspensions of π-conjugated material. A model system of a cationic conjugated polyelectrolyte poly(3-[6'-{N-butylimidazolium}hexyl]thiophene) bromide and sodium poly(styrenesulfonate) dissolved in tetrahydrofuran-water mixtures was used to investigate this complexation behavior of conjugated polyelectrolytes in terms of electrostatic strength, solvent quality, and polymer concentration. The balance of electrostatic interaction between the oppositely charged polyelectrolytes together with their charge compensating counterions and solvent quality for the hydrophobic π-conjugated backbone leads to a rich phase diagram of soluble complexes, precipitates, and complex coacervates. The conjugated polyelectrolyte in the polyelectrolyte complexes has an increased π-conjugation length and enhanced emissivity, with ideal chain configurations due to the reduction of kink sites and torsional disorder. The advantageous photophysical properties in the dense liquid phases makes the scheme attractive for the large-scale processing of optoelectronic devices, chemical sensors, and bioelectronics components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.