Abstract

Complex (nonlinear) unloading behavior following plastic straining has been reported as a significant challenge to accurate springback prediction. More fundamentally, the nature of the unloading deformation has not been resolved, being variously attributed to nonlinear/reduced modulus elasticity or to inelastic/“microplastic” effects. Unloading-and-reloading experiments following tensile deformation showed that a special component of strain, deemed here “Quasi-Plastic-Elastic” (“QPE”) strain, has four characteristics. (1) It is recoverable, like elastic deformation. (2) It dissipates work, like plastic deformation. (3) It is rate-independent, in the strain rate range 10 −4–10 −2/s, contrary to some models of anelasticity to which the unloading modulus effect has been attributed. (4) To first order, the evolution of plastic properties occurs during QPE deformation. These characteristics are as expected for a mechanism of dislocation pile-up and relaxation. A consistent, general, continuum constitutive model was derived incorporating elastic, plastic, and QPE deformation. Using some aspects of two-yield-function approaches with unique modifications to incorporate QPE, the model was implemented in a finite element program with parameters determined for dual-phase steel and applied to draw-bend springback. Significant differences were found compared with standard simulations or ones incorporating modulus reduction. The proposed constitutive approach can be used with a variety of elastic and plastic models to treat the nonlinear unloading and reloading of metals consistently for general three-dimensional problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.