Abstract
Computations that are performed by the cerebellar cortex are transmitted via simple spikes of Purkinje cells (P-cells) to downstream structures, but because P-cells are many synapses away from muscles, we do not know the relationship between modulation of simple spikes and control of behavior. Here, we recorded the spiking activities of hundreds of P-cells in the oculomotor vermis of marmosets during saccadic eye movements and found that following the presentation of a visual stimulus, the olivary input to a P-cell coarsely described the direction and amplitude of the visual stimulus as well as the upcoming movement. Occasionally, the complex spike occurred just before saccade onset, suppressing the P-cell's simple spikes and disrupting its output during that saccade. Remarkably, this brief suppression of simple spikes altered the saccade's trajectory by pulling the eyes toward the part of the visual space that was preferentially encoded by the olivary input to that P-cell. Thus, there is an alignment between the sensory space encoded by the complex spikes and the behavior conveyed by the simple spikes: a reduction in simple spikes is a signal to bias the ongoing movement toward the part of the sensory space preferentially encoded by the olivary input to that P-cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.