Abstract

In the typical scenario in time-domain wave-based acoustics, the solution to the acoustic wave equation is approximated over a three-dimensional volumetric grid using a time stepping method. In the setting of very large simulations, the grid is normally assumed to be regular (e.g. Cartesian) so that massive parallelism may be exploited. One difficulty has been in representing source distributions that do not conform neatly to a regular grid. Using a Fourier-based optimisation procedure in the wave vector domain, it is possible to represent arbitrary source distributions in a flexible way over a pre-defined collection of grid points. Such a methodology is independent of the particular choice of simulation method and depends only on the regularity of the grid. In this paper, approximations to various simple distributions, including the line source and piston, are examined, with regard to accuracy, rotation of the distribution relative to the grid, and the size of the point cloud used to represent the source. Numerical results are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.