Abstract

Plant invasions have tremendous potential to alter food webs by changing basal resources. Recent studies document how plant invasions may contribute to increased arthropod abundances in detritus-based food webs. An obvious mechanism for this phenomenon—a bottom-up effect resulting from elevated levels of detritus from the invasive plant litter—has not been explicitly studied. We examined the effects of an annual grass invasion on ground arthropod assemblages in the coastal sage scrub (CSS) of southern California. Bottom-up food web theory predicts that the addition of detritus would increase generalist-feeding arthropods at all trophic levels; accordingly, we expected increases in fungi, Collembola, and common predators such as mites and spiders. For the common ant taxa, habitat alteration may also be important for predicting responses. Thus we expected that Forelius mccooki and Pheidole vistana, the most common ant species, would decline because of changes in soil temperature (F. mccooki) and habitat structure (P. vistana) associated with litter. We studied trends observationally and conducted a 3-year experiment in which we manipulated litter quantity. In contrast to other published studies, most detritus-based arthropod taxa declined in areas of high grass invasion, and, within trophic levels, responses often varied idiosyncratically. For the two most common taxa, a native ant (F. mccooki), and predatory mites in the Anystidae, we experimentally linked declines in abundance to increased levels of invasive grass litter. Such declines, especially those exhibited by the most common ant taxa, could have cascading effects on the CSS ecosystem, where ants are numerically dominant and thus may have broad influences on food web and ecosystem properties. Our results highlight that accurately predicting arthropod responses to invasive plant litter requires careful consideration of the structural and food resources provided by detritus to each particular food web.Electronic supplementary materialThe online version of this article (doi:10.1007/s00442-009-1425-7) contains supplementary material, which is available to authorized users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.