Abstract
We show that on a dense open set of analytic one-frequency complex valued cocycles in arbitrary dimension Oseledets filtration is either dominated or trivial . The underlying mechanism is different from that of the Bochi-Viana Theorem for continuous cocycles, which links non-domination with discontinuity of the Lyapunov exponent. Indeed, in our setting the Lyapunov exponents are shown to depend continuously on the cocycle, even if the initial irrational frequency is allowed to vary. On the other hand, this last property provides a good control of the periodic approximations of a cocycle, allowing us to show that domination can be characterized, in the presence of a gap in the Lyapunov spectrum, by additional regularity of the dependence of sums of Lyapunov exponents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.