Abstract

Summary The computational problems in reservoir fluid systems are mainly in the critical region and in liquid-liquid (LL), vapor-liquid-liquid (VLL), and higher-phase equilibria. The conventional methods to perform phase-equilibrium calculations with the equality of chemical potentials cannot guarantee a correct solution. In this study, we propose a simple method to calculate the equilibrium state by direct minimization of the Gibbs free energy of the system at constant temperature and pressure. We use the simulated annealing (SA) algorithm to perform the global minimization. Estimates of key parameters of the SA algorithm are also made for phase-behavior calculations. Several examples, including (1) VL equilibria in the critical region, (2) VLL equilibria for reservoir fluid systems, (3) VLL equilibria for an H2S-containing mixture, and (4) VL-multisolid equilibria for reservoir fluids, show the reliability of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.