Abstract

Based on computerized symbolic computation, a complex hyperbolic-function method is proposed for the general nonlinear equations of mathematical physics in a unified way. In this method, we assume that exact solutions for a given general nonlinear equations be the superposition of different powers of the sech-function, tanh-function and/or their combinations. After finishing some direct calculations, we can finally obtain the exact solutions expressed by the complex hyperbolic function. The characteristic feature of this method is that we can derive exact solutions to the general nonlinear equations directly without transformation. Some illustrative equations, such as the ( 1 + 1 )-dimensional coupled Schrödinger–KdV equation, ( 2 + 1 )-dimensional Davey–Stewartson equation and Hirota–Maccari equation, are investigated by this means and new exact solutions are found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.