Abstract

Complex formation and liquid-liquid extraction were studied in a system containing cobalt(II), 4-(2-pyridylazo)resorcinol (PAR), 1,4-diphenyl-3-(phenylamino)-1H-1,2,4-triazole (Nitron, Nt), water, and chloroform. The effect of some experimental parameters (pH, shaking time, concentration of PAR, and concentration of Nt) was systematically investigated, and the optimum conditions for cobalt extraction as an ion-association complex, (NtH+)[Co3+(PAR)2], were found. The following key equilibrium constants were calculated: constant of association (Log β=4.77±0.06), constant of distribution (LogKD=1.34±0.01), and constant of extraction (LogKex=6.11±0.07). Beer’s law was obeyed for Co concentrations up to 1.7 μg mL−1 with a molar absorptivity of 6.0×104 L mol−1 cm−1 at λmax=520 nm. Some additional characteristics, such as limit of detection, limit of quantification, and Sandell’s sensitivity, were estimated as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.