Abstract

This paper studies the dynamical behavior of a Kaldor model of business cycle with discrete-time analytically and numerically. The conditions and the critical coefficients for the flip (period-doubling), Neimark-Sacker, and strong resonances are computed analytically. By using the critical coefficients, the bifurcation scenarios are determined for each of the deleted bifurcation points. Bifurcation curves of fixed points and cycles with periods up to sixteen by changing one and two parameters along with all codim-1 and codim-2 bifurcations on the corresponding curves are computed using the numerical continuation method. Numerical analysis confirms our analytical results and reveals more complex dynamical behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.