Abstract

In a recent paper [1], Ablowitz, Halburd and Herbst applied Nevanlinna theory to prove some results on complex difference equations reminiscent of the classical Malmquist theorem in complex differential equations. A typical example of their results tells us that if a complex difference equation y(z + 1) + y(z − 1) = R(z, y) with R(z, y) rational in both arguments admits a transcendental meromorphic solution of finite order, then degy R(z, y) ≤ 2. Improvements and extensions of such results are presented in this paper. In addition to order considerations, a result (see Theorem 13) is proved to indicate that solutions having Borel exceptional zeros and poles seem to appear in special situations only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.