Abstract

The current work presents the complex dielectric function and the opto-electronic properties of lead-free Ba0.8Ca0.2Ti0.9Zr0.1O3 (BCZT) electro-ceramic, derived from valence electron energy loss spectroscopy, in transmission electron microscopy (VEELS–TEM).A single tetragonal perovskite phase, with P4mm space group, was determined by Rietveld refinement of the x-ray diffraction pattern. The VEELS–TEM experiment scanned the energy interval from 0–50 eV. The spectroscopic analysis started with the chemical identification of the atoms that conforms the BCZT solid-solution. Bulk and surface plasmons were located at 27.2 eV and 12.9 eV, respectively in the energy loss function. Complex dielectric function was obtained using Kramers–Kronig analysis from the Gatan Microscopy Suite software. Dielectric constant was calculated from the real part of the complex dielectric function, while the inter-band transitions were identified in the joint density of states function. The refraction index n and the extinction coefficient k, as a function of energy, were obtained from the complex dielectric function. The bandgap energy was determined using a polynomial fit in the optical absorption coefficient plot with an Eg = 3.2 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.