Abstract

▪ Abstract The study of complex adaptive systems, a subset of nonlinear dynamical systems, has recently become a major focus of interdisciplinary research in the social and natural sciences. Nonlinear systems are ubiquitous; as mathematician Stanislaw Ulam observed, to speak of “nonlinear science” is like calling zoology the study of “nonelephant animals” (quoted in Campbell et al. 1985 , p. 374). The initial phase of research on nonlinear systems focused on deterministic chaos, but more recent studies have investigated the properties of self-organizing systems or anti-chaos. For mathematicians and physicists, the biggest surprise is that complexity lurks within extremely simple systems. For biologists, it is the idea that natural selection is not the sole source of order in the biological world. In the social sciences, it is suggested that emergence—the idea that complex global patterns with new properties can emerge from local interactions—could have a comparable impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.