Abstract

We investigate the variant of epistemic logic S5 for reasoning about knowledge under hypotheses. The logic is equipped with a modal operator of necessity that can be parameterized with a hypothesis representing background assumptions. The modal operator can be described as relative necessity and the resulting logic turns out to be a variant of Chellas’ Conditional Logic. We present an axiomatization of the logic and its extension with the common knowledge operator and distributed knowledge operator. We show that the logics are decidable, complete w.r.t. Kripke as well as topological structures. The topological completeness results are obtained by utilizing the Alexandroff connection between preorders and Alexandroff spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.