Abstract

We prove the complete monotonicity on (0,∞)n for suitable inverse powers of the spanning-tree polynomials of graphs and, more generally, of the basis generating polynomials of certain classes of matroids. This generalizes a result of Szegő and answers, among other things, a long-standing question of Lewy and Askey concerning the positivity of Taylor coefficients for certain rational functions. Our proofs are based on two ab-initio methods for proving that P-β is completely monotone on a convex cone C: the determinantal method and the quadratic-form method. These methods are closely connected with harmonic analysis on Euclidean Jordan algebras (or equivalently on symmetric cones). We furthermore have a variety of constructions that, given such polynomials, can create other ones with the same property: among these are algebraic analogues of the matroid operations of deletion, contraction, direct sum, parallel connection, series connection and 2-sum. The complete monotonicity of P-β for some β>0 can be viewed as a strong quantitative version of the half-plane property (Hurwitz stability) for P, and is also related to the Rayleigh property for matroids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.