Abstract

BackgroundFollicle mites of the genus Demodex are found on a wide diversity of mammals, including humans; surprisingly little is known, however, about the evolution of this association. Additional sequence information promises to facilitate studies of Demodex variation within and between host species. Here we report the complete mitochondrial genome sequences of two species of Demodex known to live on humans—Demodex brevis and D. folliculorum—which are the first such genomes available for any member of the genus. We analyzed these sequences to gain insight into the evolution of mitochondrial genomes within the Acariformes. We also used relaxed molecular clock analyses, based on alignments of mitochondrial proteins, to estimate the time of divergence between these two species.ResultsBoth Demodex genomes shared a novel gene order that differs substantially from the ancestral chelicerate pattern, with transfer RNA (tRNA) genes apparently having moved much more often than other genes. Mitochondrial tRNA genes of both species were unusually short, with most of them unable to encode tRNAs that could fold into the canonical cloverleaf structure; indeed, several examples lacked both D- and T-arms. Finally, the high level of sequence divergence observed between these species suggests that these two lineages last shared a common ancestor no more recently than about 87 mya.ConclusionsAmong Acariformes, rearrangements involving tRNA genes tend to occur much more often than those involving other genes. The truncated tRNA genes observed in both Demodex species would seem to require the evolution of extensive tRNA editing capabilities and/or coevolved interacting factors. The molecular machinery necessary for these unusual tRNAs to function might provide an avenue for developing treatments of skin disorders caused by Demodex. The deep divergence time estimated between these two species sets a lower bound on the time that Demodex have been coevolving with their mammalian hosts, and supports the hypothesis that there was an early split within the genus Demodex into species that dwell in different skin microhabitats.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-1124) contains supplementary material, which is available to authorized users.

Highlights

  • Follicle mites of the genus Demodex are found on a wide diversity of mammals, including humans; surprisingly little is known, about the evolution of this association

  • The 15 other species of Acariformes with complete mitochondrial genomes available in GenBank exhibited an average genome size of 14,240 bp (SE 281 bp) and an average AT-percentage of 74.9% (SE 1.7%). These values agree closely with those that we observed for both Demodex species, suggesting that the same combinations of mutation pressures and selective forces that determine these parameters for other Acariformes are operating in the Demodex lineage

  • A further test of this hypothesis will need to await further information about the primary habitats for taxa with available sequence information. These represent the first determinations of the complete mitochondrial genome sequences from any member of the genus Demodex

Read more

Summary

Introduction

Follicle mites of the genus Demodex are found on a wide diversity of mammals, including humans; surprisingly little is known, about the evolution of this association. Mites of the genus Demodex live in the hair follicles and sebaceous glands of mammalian skin [1] They are extremely widespread among mammalian lineages, with species having been described from hosts in three of the seven marsupial orders, and in 11 of the 18 eutherian orders [2]. Their bodies exhibit specializations that make them well adapted to inhabiting the constricted spaces of the pilosebaceous complex—they are typically just 100–300 μM long and cylindrical in shape, with extremely reduced legs and setation (Figure 1) Together, these observations suggest an ancient, coevolutionary relationship between mammals and the Demodex species that inhabit their skin; yet surprisingly little is known about the evolutionary history or dynamics of this association. Future studies examining the potential roles of Demodex in skin disorders, as well as interactions between Demodex and the host immune system, would be aided by an increase in the genetic markers available for distinguishing mite populations

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.