Abstract

Lactococcus lactis subsp. lactis is a pathogenic bacterium causing postharvest decay of the cultivated mushroom Pleurotus eryngii, whose pathogenic mechanism is little known. Sequencing of its complete genome is a prerequisite for revealing the molecular mechanism of infection. In this research, the complete genome of SLPE1-3 was obtained using the Single Molecular Real Time (SMRT) sequencing strategy. The genome was analyzed both structurally and functionally. The complete genome of SLPE1-3 consists of a single, circular chromosome (2,522,493 bp; 34.91% GC content) without any plasmid. The results showed the feasibility and superiority of SMRT in bacterial complete-genome research. The genome of SLPE1-3 has the specific features of L. lactis subsp. lactis not just in the phylogenesis and genome structure, but also in functional classification. Compared with L. lactis subsp. lactis IL1403, L. lactis subsp. cremoris MG1363 and L. lactis subsp. lactis KF147, 23 peculiar genes were identified in SLPE1-3 which were involved in lipid metabolism, cell wall biogenesis and some functional enzymes. In addition, 37 potential genes relating to antifungal function were filtered for further mechanism research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.