Abstract

Normal temperature catalytic ozonation (NTCO) is a promising yet challenging method for the removal of volatile organic compounds (VOCs) because of limited activity of the catalysts at ambient temperature. Here, we report a series of Pt/FeOx catalysts prepared by the co-precipitation method for NTCO of gaseous methanol. All samples were found to be active and among them, the Pt/FeOx-400 (calcined at 400 °C) catalyst with a Pt cluster loading of 0.2% exhibited the highest activity, able to completely convert methanol into CO2 and H2O at 30 °C. Extensive experimental research suggested that the superior catalytic activity could be attributed to the highly dispersed Pt clusters and an appropriate molar ratio of Pt0/Pt2+. Furthermore, electron paramagnetic resonance and density functional theory computational studies revealed the mechanism that the Pt/FeOx-400 catalyst could activate O3 and water effectively to produce hydroxyl radicals responsible for the catalytic oxidation of methanol. The findings of this work may foster the development of technologies for normal temperature abatement of VOCs with low energy consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.