Abstract
<h2>Summary</h2> The realization of functional molecular devices is inseparable from deep understanding of the intrinsic structure-property relationship of molecules. However, due to limited detection sensitivity and temporal resolution of current methods, there are rare reports on fully probing <i>in situ</i> dynamic changes of the molecular stereostructures at the single-molecule level in real time. Here, we present a complete deciphering of the dynamic stereostructures of a single aggregation-induced emission molecule using molecular junctions, which are capable of executing rapid real-time electrical measurements to achieve the unprecedented electrical mapping, thus feeding back the dynamic changes of the molecular stereostructures. Experimental and theoretical investigation consistently verify the intramolecular motions under electric field and the isomerization dynamics with strong temperature and electric field dependence, offering new insights into the development of ultra-sensitive devices. We anticipate that further integration of optical measurements with this approach will enable sophisticated synchronous monitoring of broad single-molecule photochemistry and photophysics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.