Abstract

We present the design and realization of ultra-thin chiral metasurfaces with giant broadband optical activity in the infrared wavelength. The chiral metasurfaces consisting of periodic hole arrays of complementary asymmetric split ring resonators are fabricated by femtosecond laser two-photon polymerization. Enhanced transmission with strong polarization conversion up to 97% is observed owing to the chiral surface plasmons resulting from mirror symmetry broken. The dependence of optical activity on the degree of structural asymmetry is investigated. This simple planar metasurface is expected to be useful for designing ultra-thin active devices and tailoring the polarization behavior of complex metallic nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.