Abstract

BACKGROUND Trypanosoma cruzi is a protozoan parasite and an etiological agent of Chagas disease. There is a wide variability in the clinical outcome of its infection, ranging from asymptomatic individuals to those with chronic fatal mega syndromes. Both parasite and host factors, as well as their interplay, are thought to be involved in the process.OBJECTIVES To evaluate the resistance to complement-mediated killing in two T. cruzi TcI strains with differential virulence and the subsequent effect on their infectivity in mammalian cells.METHODS Tissue-culture derived trypomastigotes of both strains were incubated in guinea pig serum and subjected to flow cytometry in order to determine their viability and complement activations. Trypomastigotes were also incubated on host cells monolayers in the presence of serum, and infectivity was evaluated under different conditions of complement pathway inhibition. Relative expression of the main parasite-specific complement receptors between the two strains was assessed by quantitative real-time polymerase chain reaction.FINDINGS In this work, we showed that two TcI strains, one with lower virulence (Ninoa) compared to the other (Qro), differ in their resistance to the lytic activity of complement system, hence causing a compromised ability of Ninoa strain to invade mammalian cells. These results correlate with the three-fold lower messenger RNA (mRNA) levels of complement regulatory protein (CRP), trypomastigote-decay acceleration factor (T-DAF), and complement C2 receptor inhibitor trispanning (CRIT) in Ninoa compared to those in Qro. On the other hand, calreticulin (CRT) mRNA and surface protein levels were higher in Ninoa strain and promoted its infectivity when the lectin pathway of the complement system was inhibited.MAIN CONCLUSIONS This work suggests the complex interplay of CRP, T-DAF, CRIT, and CRT, and the diagnostic value of mRNA levels in the assessment of virulence potential of T. cruzi strains, particularly when dealing with isolates with similar genetic background.

Highlights

  • Trypanosoma cruzi is a protozoan parasite and an etiological agent of Chagas disease

  • To corroborate that the lytic activity of serum was dependent on the complement system activity, Ninoa and Qro tissue culture trypomastigotes (TCT) were incubated in presence of EDTA and Guinea-pig serum (GPS) as negative controls (Fig. 1C)

  • Ninoa TCT activate the alternative and lectin pathways of the complement system more efficiently - For a detailed investigation of the complement pathways activated by TCT, experiments with anti-C3 antibody were performed after pre-incubation with GPS

Read more

Summary

Objectives

To evaluate the resistance to complement-mediated killing in two T. cruzi TcI strains with differential virulence and the subsequent effect on their infectivity in mammalian cells

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.