Abstract

We evaluated the inhibitory potencies at excitatory amino acid receptors of 2,3-dihydroxy-7-sulfamoyl-benzo[f]quinoxaline (BQX) and its 6-nitro derivative, NBQX. Currents activated by kainate or (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) in two-electrode voltage-clamp recordings of Xenopus oocytes injected with rat cortex mRNA were inhibited by BQX and NBQX: the apparent K i values versus kainate were 14 μM and 78 nM, respectively, and versus AMPA were 23 μM and 63 nM, respectively. Thus, to a degree even more marked than with other quinoxalinedione derivatives, 6-nitro substitution of BQX to yield NBQX increases potency (200-fold) at the non-NMDA ionotropic receptor, but does not conter selectivity for kainate or AMPA. Schild analysis of the NBQX inhibition of the kainate and AMPA currents yielded pA 2 values of 7.17 ± 0.05 and 7.05 ± 0.10, respectively, and slopes near unity confirming the competitive nature of the inhibition. Neither BQX nor NBQX significantly inhibited the current activated by glycine plus NMDA. The selectivity ratio of NBQX (> 5000-fold) is by far the greatest of any quinoxalinedione derivative antagonist of the kainate/AMPA receptor. BQX and NBQX also inhibited the excitatory postsynaptic field potentials mediated by kainate/AMPA receptors in the CA1 region of hippocampal slices after stimulation of the Schaffer collateral-commissural pathways with IC 50 values of 130 and 0.90 μM, respectively. The 10-fold differences between the IC 50 values in hippocampal slices and the K i values in Xenopus oocytes correlate closely with data for other quinoxalinedione derivative antagonists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.