Abstract

A stable 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) radical was covalently attached at its 4-position to the imide nitrogen atom of a perylene-3,4:9,10-bis(dicarboximide) (PDI) to produce TEMPO-PDI, 1, having a well-defined distance and orientation between TEMPO and PDI. Transient optical absorption experiments in toluene following selective photoexcitation of the PDI chromophore in TEMPO-PDI show that enhanced intersystem crossing occurs with tau = 45 +/- 1 ps, resulting in formation of TEMPO-(3*)PDI, while the same experiment in THF shows that the electron-transfer reaction TEMPO-(1*)PDI --> TEMPO(+*)-PDI(-*) occurs with tau = 1.2 +/- 0.2 ps and thus competes effectively with enhanced intersystem crossing. Time-resolved EPR (TREPR) spectroscopy on the photogenerated three-spin system TEMPO-(3*)PDI in toluene at 295 K initially shows a broad signal assigned to spin-polarized (3*)PDI, which thermalizes at longer times and is accompanied by formation of an emissively polarized TEMPO radical. No signals are observed in THF at 295 K. The TREPR spectrum of TEMPO-(3*)PDI at 85 K in toluene shows an emissive/absorptive signal due to TEMPO and a broad triplet signal due to (3*)PDI having a spin polarization pattern characteristic of overpopulation of its T(0) sublevel. This unusual spin polarization pattern does not result from radical pair intersystem crossing because electron transfer does not occur at 85 K. The observed spin polarization of (3*)PDI cannot be readily explained by mechanisms discussed previously, leading us to propose a new spin polarization mechanism, which requires that the radical and attached triplet are in the weak exchange regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.