Abstract

We study the classic frequent items problem in data streams, but from a competitive analysis point of view. We consider the standard worst-case input model, as well as a weaker distributional adversarial setting. We are primarily interested in the single-slot memory case and for both models we give (asymptotically) tight bounds of Θ(N) and Θ(N3) respectively, achieved by very simple and natural algorithms, where N is the stream's length. We also provide lower bounds, for both models, in the more general case of arbitrary memory sizes of k≥1

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.