Abstract
We introduce and analytically and numerically study a simple model of interagent competition, where underachievement is strongly discouraged. We consider N≫1 particles performing independent Brownian motions on the line. Two particles are selected at random and at random times, and the particle closest to the origin is reset to it. We show that, in the limit of N→∞, the dynamics of the coarse-grained particle density field can be described by a nonlocal hydrodynamic theory which was encountered in a study of the spatial extent of epidemics in a critical regime. The hydrodynamic theory predicts relaxation of the system toward a stationary density profile of the "swarm" of particles, which exhibits a power-law decay at large distances. An interesting feature of this relaxation is a nonstationary "halo" around the stationary solution, which continues to expand in a self-similar manner. The expansion is ultimately arrested by finite-N effects at a distance of order sqrt[N] from the origin, which gives an estimate of the average radius of the swarm. The hydrodynamic theory does not capture the behavior of the particle farthest from the origin-the current leader. We suggest a simple scenario for typical fluctuations of the leader's distance from the origin and show that the mean distance continues to grow indefinitely as sqrt[t]. Finally, we extend the inter-agent competition from n=2 to an arbitrary number n of competing Brownian particles (n≪N). Our analytical predictions are supported by Monte Carlo simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.