Abstract
Fs-laser induced element redistribution (FLIER) has been a subject of intensive research in recent years. Its application to various types of glasses has already resulted in the production of efficient optical waveguides, tappers, amplifiers and lasers. Most of the work reported on FLIER-based waveguides refers to structures produced by the cross-migration of alkali (Na, K) and lanthanides (mostly La). The latter elements act as refractive index carrying elements. Herein, we report the production of Ba-based, FLIER-waveguides in phosphate glass with an index contrast > 10−2. Phosphate glasses modified with the same amount of Na2O and K2O, and variable amounts of BaO and/or La2O3 were used to produce the FLIER-waveguides with Ba and or La acting as index carriers. Ba-only modified glasses show a waveguide writing threshold and light guiding performance comparable to that of La-based structures. However, mixed Ba-La glasses show a much higher element migration threshold, and much smaller compositionally modified regions. This behavior is consistent with a competition effect in the cross-migration of both elements (Ba and La) against the alkalis. Such an effect can be applied to inhibit undesired element redistribution effects in fs-laser processing applications in multicomponent glasses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.