Abstract
Squeezed light is a useful phenomenon that can be exploited to improve the sensitivity of specific classes of detectors based on optomechanical effects. In this study, the effect of squeezed light was evaluated by explicitly examining the role of the squeezing parameters on the final effective temperature of the oscillator. The results show that the observed cooling and heating effects are strongly dependent on the squeezing parameters and the phase. Using an oscillator of 10.1 MHz driven by a 1064-nm laser, the lowest effective temperature and quantum number are three orders of magnitude smaller compared to the case of no squeezing; especially, these minimum values are obtained at the squeezing phase of about 0.8π. This study highlighted important insights for the optimization of cooling efficiency using squeezed light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.