Abstract

Injection-limited contacts in many of electronic devices such as light-emitting diodes (LEDs) and field effect transistors (FETs) are not easily avoided. We demonstrate that charge injection in the injection-limited contact is determined by charge transport properties as well as the charge injection energy barrier due to vacuum energy level alignment. Interestingly, injection-limited contact properties were observed at 5 nm diameter lead sulfide (PbS) quantum dot (QD)/Au contacts for which carrier injection is predicted to be energetically favorable. To probe the effect of charge transport properties on carrier injection, the electrical channel resistance of PbS nanocrystal (NC) FETs was varied through thermal annealing, photoillumination, ligand exchange, surface treatment of the gate dielectric, and use of different sized PbS NCs. Injection current through the PbS/Au contact varied with the FET mobility of PbS NC films consistent with a theoretical prediction where the net injection current is dominated...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.