Abstract

BackgroundSegmenting liver vessels from contrast-enhanced computed tomography images is essential for diagnosing liver diseases, planning surgeries and delivering radiotherapy. Nevertheless, identifying vessels is a challenging task due to the tiny cross-sectional areas occupied by vessels, which has posed great challenges for vessel segmentation, such as limited features to be learned and difficult to construct high-quality as well as large-volume data.MethodsWe present an approach that only requires a few labeled vessels but delivers significantly improved results. Our model starts with vessel enhancement by fading out liver intensity and generates candidate vessels by a classifier fed with a large number of image filters. Afterwards, the initial segmentation is refined using Markov random fields.ResultsIn experiments on the well-known dataset 3D-IRCADb, the averaged Dice coefficient is lifted to 0.63, and the mean sensitivity is increased to 0.71. These results are significantly better than those obtained from existing machine-learning approaches and comparable to those generated from deep-learning models.ConclusionSophisticated integration of a large number of filters is able to pinpoint effective features from liver images that are sufficient to distinguish vessels from other liver tissues under a scarcity of large-volume labeled data. The study can shed light on medical image segmentation, especially for those without sufficient data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.