Abstract
Absolute distance measurement techniques are of significant interest in the field of large volume metrology. Ones which could offer an ability of ADM and high accuracy will improve the efficiency and the quality of large assemblies. Frequency scanning interferometry (FSI) is a kind of ADM technique which use a variable synthetic-wavelength achieved by tuning the optical frequency continuously. FSI could offer a relative accuracy of several ppm in a range of tens of meters. In a FSI ranging system, it is necessary to get knowledge of the tuning range of optical frequency, which could be done by using of gas absorption cell, femtosecond laser comb, F-P etalon and the most used: a predicted auxiliary interferometer. As the result of the measurement is calculated by the tuning range of optical frequency, a length drift of the auxiliary interferometer will make a contribution in error of the result. Analysis of sampling error caused by the drift of the auxiliary interferometer has been done and a real-time compensation system has been proposed to minimize the drift of the auxiliary interferometer. The simulation has proved the analysis and the error has been decreased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.