Abstract
MLS-based identification of nonlinear systems is largely affected by deviations in the excitation signal amenable to the combined effect of DC-offset and an arbitrary gain. These induce orthogonality loss in the MLS filter bank output, thus invalidating the underlying identification construction. In this paper we present a correction algorithm to derive the corrected Volterra kernels from the biased estimations provided by the standard MLS-based procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.