Abstract

Introducing component-selective polymer chains onto the surface of a particle is an effective approach to improve the compatibilization efficiency of a particle-based compatibilizer. In this study, two particles with different kinds of component-selective polymer chains that have the same length and similar density but different graft locations were synthesized and their compatibilization effects were comparatively investigated. It was found that compared with the particle with homogeneous PMMA and PP grafts (R-P), the particle with a hemisphere of poly(methyl methacrylate) (PMMA) grafts and other hemisphere of polypropylene (PP) chains (J-P) showed a better compatibilization effect under equal loadings, although both particles exhibited high efficiency. The better compatibilization effect of particles with Janus grafts may be attributed to the stronger entanglements between grafted polymer chains and selective individual components. This work suggests that optimizing the graft location of a particle is an effective strategy for improving its compatibilization efficiency and helpful for the design of advanced particle compatibilizers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.