Abstract

To investigate the compatibility of recombinant tissue plasminogen activator (rtPA) and bevacizumab in vitro because during surgery, rtPA or rtPA-induced plasmin may cleave and inactivate bevacizumab. To simulate the intraoperative range of mixing ratios of rtPA, bevacizumab, and subretinal blood, we calculated the volumes of 12 submacular hemorrhages (SHs) with a spherical cap formula using measurements derived from fundus photographs and spectral-domain optical coherence tomographic images. Bevacizumab was incubated with rtPA or plasmin before gel electrophoresis with Coomassie blue and silver staining. The anti-angiogenetic activity of bevacizumab in the presence of rtPA with or without clotted human blood or of plasmin was quantified by vascular endothelial growth factor–enzyme-linked immunosorbent assay after incubation with the supernatant of porcine retinal pigment epithelium cell cultures. The mean (SD) volume of SH was 28.6 (24.7) mm3 (range, 6.2-94.6 mm3). In sodium dodecyl sulfate–polyacrylamid electrophoresis with Coomassie blue or silver staining, bevacizumab displayed characteristic patterns of protein bands. No additional fragments were detected in co-application of bevacizumab with either rtPA or plasmin. The anti-angiogenetic activity of bevacizumab remained unchanged in co-application with rtPA with or without blood or plasmin. We demonstrated the absence of cleavage or functional inactivation of bevacizumab by rtPA in an in-vitro model of their intraoperative co-application as a treatment of SH. In clinical practice, rtPA and bevacizumab can be co-applied as a treatment for neovascular age-related macular degeneration with SH to simultaneously clear SH and reduce choroidal new vessel activity.

Highlights

  • We demonstrated the absence of cleavage or functional inactivation of bevacizumab by recombinant tissue plasminogen activator (rtPA) in an in-vitro model of their intraoperative co-application as a treatment of submacular hemorrhages (SHs)

  • Clinical relevance: In clinical practice, rtPA and bevacizumab can be co-applied as a treatment for neovascular age-related macular degeneration with SH to simultaneously clear SH and reduce choroidal new vessel activity

  • W ITHOUT TREATMENT, the long-term prognosis of neovascular age-related macular degeneration (AMD) complicated by submacular hemorrhage (SH) is usually poor because the underlying choroidal neovascularization (CNV) lesion progresses and the resolution of the hemorrhage is associated with the formation of a macular scar.[1]

Read more

Summary

Methods

To simulate the intraoperative range of mixing ratios of rtPA, bevacizumab, and subretinal blood, we calculated the volumes of 12 submacular hemorrhages (SHs) with a spherical cap formula using measurements derived from fundus photographs and spectraldomain optical coherence tomographic images. Bevacizumab was incubated with rtPA or plasmin before gel electrophoresis with Coomassie blue and silver staining. The anti-angiogenetic activity of bevacizumab in the presence of rtPA with or without clotted human blood or of plasmin was quantified by vascular endothelial growth factor–enzyme-linked immunosorbent assay after incubation with the supernatant of porcine retinal pigment epithelium cell cultures

Results
Conclusions
METHODS
RESULTS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.