Abstract

To clarify the characteristics of the water-soluble organic components in atmospheric aerosols, size-separated aerosol samples were simultaneously collected at a roadside site (R) and a suburban background site (S) in Saitama, Japan, during spring and summer 2007 and winter 2008. Chemical compositions, including water-soluble organic carbon (WSOC), organic carbon, inorganic ionic components, and individual water-soluble organic acids (saturated dicarboxylic acids, unsaturated dicarboxylic acids, ketocarboxylic acids, and dicarbonyls), were analyzed in size-separated samples. The seasonal variation of WSOC in Saitama aerosols was larger than the spatial difference between the two sites, with summer WSOC concentrations being 2.5-2.8 times those in the other seasons. Seasonal average concentrations of the detected organic acids in PM7.0 were 542 ng/m^3 (R) and 670 ng/m^3 (S). Strong correlations were observed between C2-C5 n-dicarboxylic acids and ambient oxidants. The concentration ratios of individual n-dicarboxylic acids (C2-C5) to elemental carbon were significantly higher in suburban samples than in roadside samples, indicating that the contribution of secondary formation to these acids was larger in suburban samples. During the warm seasons, the concentrations of sulfate, ammonium, WSOC, and individual acids in fine particles were very high, whereas nitrate, chloride, sodium, and calcium concentrations were higher in coarse particles. Comparisons between the two sites showed that secondary formation contributed more to the total amount of particulate water-soluble organic acids in Saitama aerosols than direct emissions from anthropogenic and natural sources. However, vehicle exhaust was also an important source of dicarboxylic acids in Saitama aerosols, especially in the near-roadside environment.

Highlights

  • Water-soluble organic compounds potentially play an important role in aerosol–cloud interaction, and are contributors to cloud condensation nuclei (CCN)

  • The concentration ratios of individual n-dicarboxylic acids (C2-C5) to elemental carbon were significantly higher in suburban samples than in roadside samples, indicating that the contribution of secondary formation to these acids was larger in suburban samples

  • It is commonly believed that the water-soluble organic carbon (WSOC) fraction is “low” for primary organic carbon (OC) and that it increases with aging of the aerosol, together with the general oxidation state of organic matter (Saxena and Hildemann, 1996; Decesari et al, 2001; Jaffrezo et al, 2005)

Read more

Summary

Introduction

Water-soluble organic compounds potentially play an important role in aerosol–cloud interaction, and are contributors to cloud condensation nuclei (CCN). To clarify the characteristics of the water-soluble organic components in atmospheric aerosols, size-separated aerosol samples were simultaneously collected at a roadside site (R) and a suburban background site (S) in Saitama, Japan, during spring and summer 2007 and winter 2008.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.