Abstract

The spent biological activated carbon (BAC) should be disposed properly; regeneration was a better choice. Performances of thermal and ultrasonic regeneration to the BAC with various service time (3years, 5years, and 10years) were compared comprehensively; the recovery of the BAC's pore structure, variation of mechanical hardness, influence of bioactivity, and removal efficiency of typical pollutants in the reuse were examined. The results showed that thermal regeneration was an utterly regeneration, and almost all the pore structure was restored, whose recovery rate was above 90% for BAC used 3years and disfavored by the longer BAC's service time (83% for the BAC used 5years). Ultrasonic regeneration could recover part of the BAC's pores (including micropores) and the restoration mainly focused on the BAC's surface, so the recovery rate was not influenced by the BAC's service time, and the recovery values of specific surface areas and iodine value were kept at 120m2/g and 200mg/g, respectively. In addition, the ultrasonic treatment enhanced the BAC's biological activity even with a significant decrease of the biomass on the BAC. The mechanical hardness of BAC decreased from 95 to 89% for the first regeneration and further to 79% for the second regeneration, whereas relatively lower decrease happened for the ultrasonic regeneration (less than 10% after 5 regeneration cycles). The mass losses in the thermal and ultrasonic regeneration were about 13%, 0.5%, and 25%, 3% for the first and second regeneration, respectively. The thermal-regenerated activated carbon (AC) exhibited excellent adsorption ability, good adherence of biofilm, and maintain higher removal rate for more than 2years, which were similar with that of the fresh AC, but relatively lower removal performance was found. However, the ultrasonic regenerated BAC retained the biodegradation ability, restored the fast-adsorption ability, and the higher removal process lasted about 6months. Taking the regeneration cost, operation, variation of the AC's characteristics, and the removal performance in reuse, ultrasonic regeneration was more suitable for the BAC filter and better used as a regular measure to maintain the higher removal performance, whereas thermal regeneration was more applicable to the activated carbon adsorption tank.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.