Abstract

Two experimental setups for time-resolved diffuse optical tomography (DOT) are described. The first involves a titanium-sapphire laser and a streak camera in a synchroscan mode. A multiple-arm light guide allows to measure simultaneously the temporal profiles of photons re-emitted at different boundary sites of the objects studied. The second one uses picosecond laser diodes and a multiple-anode micro-channel plate photomultiplier tube followed by parallel time-correlated single photon counting channels. The two instruments are described and their main specifications compared: instrument response and time resolution, sweep time, temporal stability, sensitivity and its inter-channel variation, cross-talk between adjacent channels. We will also discuss detector-specific data analysis prior to image reconstruction. Both instruments have been tested with phantoms simulating tissues and the absorption and reduced scattering images obtained have been compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.