Abstract

Two forms of the Fab fragment of the catalytic antibody 6D9 were individually displayed on yeast-cell surface in fusion to the C-terminal half of α-agglutinin: one was 6D9 Fab1, in which the light chain of the Fab (Lc) fragment is displayed on cell surface and the heavy chain of the Fab (Fd) fragment is secreted and linked to the Lc fragment with a disulfide bond; the other was 6D9 Fab2, in which the Fd fragment is displayed on cell surface and the Lc fragment is secreted and linked to the Fd fragment with a disulfide bond. Analysis by flow cytometry indicated that some 6D9 Fab2 fragments were unable to construct an appropriate conformation, and that most of the 6D9 Fab1 fragments displayed on yeast-cell surface exhibited higher binding affinity, stability, and catalytic activity. Conformation of the surface-displayed hetero-dimeric Fab fragment mainly depended on the intermolecular disulfide bond between the Lc and Fd fragments. The conformation of 6D9 Fab1 was more stable than that of Fab2. In the reducing environment of solution containing 25 nM DTT, the function of 6D9 Fab2 was almost completely lost. The successful display of 6D9 Fab1 on yeast-cell surface provides a novel approach to the engineering of catalytic antibodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.