Abstract

Dopamine is an essential neurotransmitter and its detection is important for bioanalytical chemistry. Two very different DNA aptamers have been reported for dopamine, one derived from an RNA aptamer (named Apt1) and other obtained via direct aptamer selection (named Apt2). In this study, we used four homogeneous binding assays to compare these two DNA dopamine aptamers. Thiazole orange (TO) fluorescence assay indicated that the Apt2 specifically bound with dopamine with a Kd of 2.37 μM, which was consistent with that from the isothermal titration calorimetry (ITC) assay. However, Apt1 had much less TO fluorescence change and also no signal from ITC. By labeling the two ends of the two aptamers by a fluorophore and a quencher, the aptamer beacons showed binding of dopamine only for Apt2. Finally, the label-free AuNP-based colorimetric assay showed no difference between these two aptamer sequences, and even non-binding random DNA showed the same response, indicating that AuNPs were not a good probe for detecting dopamine. According to the data, Apt1 does not appear to be able to bind dopamine specifically, while Apt2 showed specific binding and could be used for developing related biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.