Abstract

In this study, the transient analysis of a cable unwinding from a cylindrical spool package is first studied and compared to experiment. Then, a steady-state solution is also compared to transient solution. Cables are assumed to be withdrawn with a constant velocity through a fixed point which is located along the axis of the package. When the cable is flown out of the package, several dynamic forces, such as inertial force, Coriolis force, centrifugal force, tensile force, and fluid-resistance force are acting on the cable. Consequently, the cable becomes to undergo very nonlinear and complex unwinding behavior which is called unwinding balloon. In this paper, to prevent the problems during unwinding such as tangling or cutting, unwinding behaviors of cables in transient state were derived and analyzed. First of all, the governing equations of motion of cables unwinding from a cylindrical spool package were systematically derived using the extended Hamilton’s principles of an open system in which mass is transported at each boundary. And the modified finite difference methods are suggested to solve the derived nonlinear partial differential equations. Time responses of unwinding cables are calculated using Newmark time integration methods. The transient solution is compared to physical experiment, and then the steady-state solution is compared to transient solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.