Abstract

This research deals with creating a superhydrophobic/superoleophobic surface by preparing a metastable Cassie–Baxter (CB) surface. To create a CB surface it is essential to have low surface energy and properly constructed surface morphology. We have explored three different techniques to achieve superhydrophobicity and superoleophobicity using hydroentangled nylon nonwoven fabric: pulsed plasma polymerization of 1H,1H,2H,2H-perfluorodecyl acrylate (PFAC8), microwave-assisted condensation of 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (FS), and FS condensation through wet processing. Nonwoven fabric materials prepared using these three techniques were superhydrophobic and superoleophobic as shown by their very high contact angles for both water (contact angles of 168–174°) and dodecane (contact angles of 153–160°). The measured contact angles agree with the predicted values obtained through designing a CB surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.